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Comparing the results with those of other researchers in the 
field of heat transfer in triangular ducts, it should be borne 
in mind, that the bulk of the references deal with tests in 
long ducts with fully, or nearly fully developed flow and in 
all cases, either uniform wall temperature or uniform heat 
flux. In the present case only a short triangular passage was 
used and the heating was only at the two ends of the fin. 
Furthermore, the value for the Nusselt number expressed in 
the equation (2), does not apply to the whole passage, but 
only to the surface of the fin. 

It should be pointed out here, that the value of Nusselt 
number defined by equation (2) can at this stage be accepted 
as valid only for a fin in an array of triangular passages 
with apex angle of 36.9”. Any change of the geometry of the 
triangular passage may change the flow and film coefficient 
distribution along the wall and consequently the value of 
mean film coefficient. 

Further testing would have to be carried out on a range 
of apex angles and fin geometries to establish a more 
universal validity. 

CONCLUSIONS 

1. The temperature distribution on the surface is not 
symmetrical and the position of minimum temperature on 
the surface is independent of the Reynolds number. 

2. The temperature distribution on the two surfaces are 
identical, but are of mirror image form, thereby creating a 
displacement between the positions of minimum tempera- 
tures on the two surfaces. 

3. The value of the average Nusselt number for the fin has 
been found to be Nu = CRe”*, the value of the constant 
being C = 0.01085. The validity ofthis Nusselt number corre- 
lation for different geometries requires further investigation. 
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NOMENCLATURE 

fin surface area [m’]; 
mean area between iso-potentials [m’]; 
a constant; 
electrostatic field strength [V/m’]; 
heat-transfer coefficient [W/m’K]; 
current density in the z direction [A/m’]; 
current [A]; 
thermal conductivity [WjmK]; 
constant voltage potential [VI; 
flow; 
radius [m] ; 
current density [A/m’]; 
paper thickness [ml; 
voltage potential [VI; 
characteristic fin length [ml. 

Greek symbols 

Y, electrical conductivity [n-‘/m]; 
6, fin thickness [ml; 
6 1, laminate thickness [ml; 

potential; 
: fin efficiency; 
1: a constant; 

a constant; 
%, two-dimensional Laplacian operator 

al 82 
=s+7. 

dY 

Subscripts 

0, fin root; 
m, mean ; 
x, y, 2, refers to directions of Cartesian co-ordinate axes. 
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INTRODUCTION 

IN TWO-DIMENSIONAL Cartesian co-ordinates, a Laplacian 
potential field in the xOy plane is represented by 

V%(x, y) = 0. (1) 

If this field of 19(x, y) is constrained to permit a flow, q(x, y), 
normal to the xOy plane, such that it is directly proportional 
to the local potential, it can be shown that the field will be 
distorted into one represented by the Helmholtz equation. 

VV-Pfl= 0 (2) 

where 2’ = a constant. 
Electrical conducting paper analogies are widely used in 

the simulation of Laplacian fields [l]. A technique to distort 
such a potential field into one represented by equation (2), 
has been developed. 

THE ELECTRICAL FIELD IN A SHEET OF 

CONDUCTION PAPER 

Consider a sheet of homogeneous and isotropic conduct- 
ing paper having uniform electrical properties. If the plane of 
the paper represents the xOy plane, then, when the paper is 
subjected to a steady current flow, 

S = yE (3) 

where 

E = -grad V(x,y) (4) 

S = -ygrad V(x,y). (5) 

Assuming the paper has a finite but negligible thickness, 

avjaz = 0; s, = 0. 

For flow continuity, 

divS=div(-ygradV)=O 

where now 

(6) 

^ 
divs=$+s, 

dY 
If the electrical conductivity, y. is constant, 

VV(x, y) = 0. 

(7) 

(8) 

Now consider this Laplacian field with a local current 
density, i,(x, y), externally induced over the paper, normal to 
the xOy plane. The flow continuity equations now give 

divS= -$$= -ydivgradV(x,y). (9) 

If i, is proportional to the local voltage potential, V(x,y), 
and if the thickness, t(x, y), is constant 

v*v-$V = 0 (10) 

where $ is a constant dependent upon the physical and 
electrical characteristics of the paper. 

THE ANALOG 

Ifa laminationis made up from sheets of conducting paper 
pasted together, and if in addition to potentials applied to 
boundaries on the top surface, a portion of the bottom 
surface is held at a potential P, a normal current flow will 
be induced over this region. The local current density will be 
given by 

i, k Y) = gy$v(x,y)-r]. (11) 

Hence 

Vz[v-P]-(yz/y6:)[V-P] = 0 (12) 

If y, y., &, and P, are all constant, equation (12) will be 
directly analogous to equations (2) and (10). Under these 
conditions, 

[V-P] G 0; i, c q; (y,/y@) = pz sz 1’. 

The energy equations applied to a constant thickness fin, 
surrounding a round tube yield 

?T i?‘T 2h 
ax2+ay2=G(T-T,) 

Equation (13) is based on the following assumptions: 

1. Heat flow is steady. 
2. The fin material is homogeneous and isotropic. 
3. The thermal conductivity, k, of the material remains 

constant. 
4. The temperature at the fin root, To, remains constant. 

Micro-ammeter 

P 
IO Cod helical 
potentiometer 

FIG. 1. A typical field plotter circuit. 
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5. The temperature of the surrounding medium, T,, remains 
constant. 

6. The heat-transfer coefficient, h, is uniform. 
7. The fin thickness, 6, is small. 
8. There is no heat flow through the’fin edge. 

In terms of the thermal potential, 0, 

V&A20 = 0 

where 

(14) 

1’ = 2hlk& 

For annular fins, equation (13) is a form of the modified 
Bessel equation, and Gardner [2] has presented solutions for 
such fins. Defining finning efficiency, I$. as 

Heat dissipated by the fin 

Heat dissipation if entire fin surface was at root temperature 

4= Af 
s 

0 dA/O,A,. (15) 
0 

Since 4 =f(O), the solution for 0 may be given instead, in 
terms ofthe efficiency, 4. Gardner presents the efficiency as a 
function of W, rO, and A; where w is a characteristic fin 
dimension and rO is the fin root radius. 

Such analytic solutions are not possible for square and 
rectangular fins, but approximate numerical solutions [3-51 
are available. 

THE MODELLING TECHNIQUE 

Laminations made up from sheets of graphitised (Tele- 
deltas) paper were tested to determine their electrical pro- 
perties. Though single sheets of paper had a resistance of 
1500 +3 per cent t2 per square along both axes, some 
variation in the values of y, and yz, was observed for the 
laminations. Qualitatively, this was consistent with the 
observed variation in the thicknesses of adhesive layers used. 
It is evident though, that if the parameter (y,/#) remains 
constant, the Helmholtz equation will still apply. Direct 
measurement of the value of (y,/yC$) proved difficult and the 
simulated value of 1’ was derived instead. 

A number of models representing two-dimensional, 
constant thickness, annular fins were constructed from a 
single sample of laminate. The required boundary conditions 
were simulated exactly, by subjecting different regions on the 
model to appropriate voltage potentials. 

Using a field plotter (Alpha PR, Fig. 1) iso-potentials were 
mapped over the model surface. The efficiencies of the 
simulated fins-were then calculated from a numerical form of 
equation (15): 

4 = &LA.iQoA, (16) 
0 

where A, = area of model surface between iso-potentials and 
0, = mean potential applicable to A,,,. These values of effi- 
ciency were fitted to curves representing Gardner’s solution 
[2]. The fit obtained (Fig. 2) indicated that the simulated 
value of I’, and hence of (y,/y#) varied by no more than 
+ 5 per cent. This was reproduced with other samples, con- 
firming that the parameter (y,/y@) could effectively be con- 
sidered a constant over any particular sample of laminate. 

This technique was verified by the simulation of square 
and rectangular fins having known numerical solutions. 
Various samples of laminate were made, and from each 
sample three models of constant thickness annular fins were 
constructed. The values of 1’ being simulated were con- 

- Gardner’s solutron 
Analog doto 

. r. /&=I,5 

L I I I I 
0 / 2 3 4 5 

WA 

FIG. 2. Efficiency of constant thickness annular fins. 

I I I I I 
0 I 2 3 4 5 

WA 

FIG. 3. Efficiency of square and rectangular fins. 

Approximate solutions Analog data 

1, [31 0, w/r = 1.2 
2, [31 V, w/r = 1.5 
3, [51 0, w/r = 2.0 

n , w/r = 3.0 
r, w/r = 2.0 
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sequently quantified by calibration against Gardner’s curves. 
Table 1 shows these values of simulated I for various samples 
of laminate. These values were then used in the simulation 
of square and rectangular fins. Derived values of fin efficiency 
are shown compared with numerical results in Fig. 3. 

Table 1. Derived values of I for various samples oflaminate 

No. of paper Derived I /I mean 
Sample No. thicknesses (m-‘) (m-i) 

2 
3 49.606 
3 48.819 

49.615 

3 3 49,600 J 
4 4 42.323 
5 4 42.520 
6 4 43.307 

42.117 

7 4 42.520 
8 4 42,913 
9 5 34.646 

10 5 33.858 
34.252 

CONCLUSIONS 

The accuracy obtainable with this analog is determined 
by the error in the calibrated value of 1. This can, with 
care. be kept within 10 per cent, and by varying the 
number of paper thicknesses in the lamination, a wide range 
of 1 may be simulated. A comparison of analytical and 
numerical data with analog results shows a deviation of less 
than k 7 per cent, and this technique has been used success- 
fully in the evaluation of sheet fins which have not been 
amenable to analytical or numerical solution. 
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NOMENCLATURE homogeneous region of arbitrary geometry V 

A(N. T), B(N, z), cp(N, t), time dependent boundary 
functions defined on S; 

aT(M, 4 

fo (M), initial distribution in V; 
k(M, T), w(M, z), P(M, r), p(M, r), prescribed functions 

defined in V; 

W+f, 4 aT ___ = div [k(M, z) grad T(M, T)] 

M, point in V; 

N. point on 5; 
n. outward normal of 5; 
T(M, T), unsteady potential distribution defined in 

equation (l), (2) and (3); 

+ CBW(M, 4- ,0-f, T,] TM, 7) +P(M, 4, 
MEV, t>O (1) 

subject to the initial condition 

7(M, 0) = fo (M) 

and the boundary conditions 

b(t), y(r). prescribed function defined in r; 
I, time variable; 
$i (M, s), eigenfunctions ; 

AW, 7) 
WN, 5) 
____ + B(N, T)T(N, t) = q(N, T). 

an 
(3) 

(2) 

/‘i(T), eigenvalues. 
IN A KECENT paper [l], the author presented an analytical 

In [l] is solved the particular case where w(M, T), k(M, T), 

p(M, r), A(N, T) and B(N, r) are not functions of the time T. 

solution for a large class of heat-transfer problems. The 
present communication complements [l] applying the 

It is supposed that the solution of the problem can be 

method of finite integral transforms for the solution of a 
represented in the form of an eigenfunction expansion, with 

more general mathematical model of transfer process with 
the assumption that the eingenvalue problem 

time and space dependent parameters. div CW, r)grad $1 (M, $1 

Consider the following boundary value problem in a finite + [if (r)w(M, r) - o(M, r)]$i (M, r) = 0 (4) 


